
NOTICE: This standard has either been superseded and replaced by a new version or discontinued. Contact ASTM International (www.astm.org) for the latest information.

An American National Standard

Endorsed by Manufacturers Standardization Society of the Valve and Fittings Industry Used in USDOE-NE Standards

Standard Specification for Carbon Steel Forgings for Piping Applications¹

This standard is issued under the fixed designation A 105/A 105M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope

1.1 This specification² covers forged carbon steel piping components for ambient- and higher-temperature service in pressure systems. Included are flanges, fittings, valves, and similar parts ordered either to dimensions specified by the purchaser or to dimensional standards such as the ANSI and API specifications referenced in Section 2. Forgings made to this specification are limited to a maximum weight of 10 000 lb [4540 kg]. Larger forgings may be ordered to Specification A 266. Tubesheets and hollow cylindrical forgings for pressure vessel shells are not included within the scope of this specification. Although this specification covers some piping components machined from rolled bar and seamless tubular products, (see 4.2) it does not cover raw material produced in these product forms.

1.2 Supplementary requirements are provided for use when additional testing or inspection is desired. These shall apply only when specified individually by the purchaser in the order.

1.3 Specification A 266/A 266M covers other steel forgings and Specifications A 675, A 695, and A 696

cover other steel bars.

1.4 This specification is expressed in both inch-pound units and SI units. However, unless the order specifies the applicable "M" specification designation (SI units), the material shall be furnished to inch-pound units.

1.5 The values stated in either inch-pound units or SI are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification. NOTE 1—The dimensionless designator NPS (nominal pipe size) has been substituted in this standard for such traditional terms as "nominal diameter," "size," and "nominal size."

2. Referenced Documents

2.1 In addition to those reference documents listed in Specification A 961, the following list of standards apply to this specification:

- 2.2 ASTM Standards:
- A 266/A 266M Specification for Carbon Steel Forgings for Pressure Vessel Components³
- A 370 Test Methods and Definitions for Mechanical Testing of Steel Products³,^{4,5}
- A 675 Specification for Steel Bars, Carbon, Hot–Wrought, Special Quality, Mechanical Properties³
- A 695 Specification for Steel Bars, Carbon, Hot-Wrought, Special Quality, for Fluid Power Applications³
- A 696 Specification for Steel Bars, Carbon, Hot-Wrought or Cold-Finished, Special Quality, for Pressure Piping Components³
- A 788 Specification for Steel Forgings, General Requirements³
- A 961 Specification for Common Requirements for Steel Flanges, Forged Fittings, Valves, and Parts for Piping Applications⁴
- E 340 Test Method for Macroetching Metals and Alloys⁶

2.3 MSS Standards:

- SP 44 Standard for Steel Pipe Line Flanges⁷
- 2.4 ASME Standards:
- B16.5 Dimensional Standards for Steel Pipe Flanges and Flanged Fittings⁸
- B16.9 Wrought Steel Buttwelding Fittings⁸
- B16.10 Face-to-Face and End-to-End Dimensions of Ferrous Valves⁸

¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel, and Related Alloysand is the direct responsibility of Subcommittee A01.22on Steel Forgings and Wrought Fittings for Piping Applications and Bolting Materials for Piping and Special Purpose Applications.

Current edition approved Dec. 10, 2000. Published February 2001. Originally published as A 105 - 26 T. Last previous edition A 105/A 105M - 98.

² For ASME Boiler and Pressure Vessel Code applications see related Specification SA-105 in Section II of that Code.

³ Annual Book of ASTM Standards, Vol 01.05.

⁴ Annual Book of ASTM Standards, Vol 01.01.

⁵ Annual Book of ASTM Standards, Vol 01.03.

⁶ Annual Book of ASTM Standards, Vol 03.01.

⁷ Available from Manufacturers' Standardization Society of the Valve and Fittings Industry, 127 Park Street, NE Vienna, VA 22180–4602.

⁸ Available from ASME International, Three Park Avenue, New York, NY 10016–5990.

- B16.11 Forged Steel Fittings, Socket Weld, and Threaded⁸
- B16.34 Valves-Flanged, Threaded and Welding End⁸
- B16.47 Large Diameter Steel Flanges⁸

2.5 API Standards:

API-600 Flanged and Butt-Welding-End Steel Gate Valves⁹

API-602 Compact Design Carbon Steel Gate Valves for Refinery Use⁹

2.6 AWS Standard:

AWSA 5.1 Mild Steel Covered Arc-Welding Electrodes¹⁰

3. Ordering Information

3.1 See Specification A 961.

3.1.1 Additional requirements (see 12.2).

4. General Requirements

4.1 Product furnished to this specification shall conform to the requirements of Specification A 961, including any supplementary requirements that are indicated in the purchase order. Failure to comply with the requirements of Specification A 961 constitutes nonconformance with this specification. In case of a conflict between the requirements of this specification and Specification A 961, this specification shall prevail.

4.2 Except as permitted by Section 6 in Specification A 961, the finished product shall be a forging as defined in the Terminology Section of Specification A 788.

5. Heat Treatment

5.1 Heat treatment is not a mandatory requirement of this specification except for the following piping components:

5.1.1 Flanges above Class 300,¹¹

5.1.2 Flanges of special design where the design pressure at the design temperature exceeds the pressure-temperature ratings of Class 300, Group 1.1,

5.1.3 Flanges of special design where the design pressure or design temperature are not known,

5.1.4 Piping components other than flanges which meet both of the following criteria: (1) over NPS 4 and (2) above Class 300, and

5.1.5 Piping components of Special $Class^{12}$ other than flanges which meet both of the following criteria: (1) over NPS 4 and (2) when the working pressure at the operating temperature exceeds the tabulated values for Special Class 300, Group 1.1.

5.2 Heat treatment, when required by 5.1 shall be annealing, normalizing, or normalizing and tempering or quenching and tempering in accordance with Specification A 961.

6. Chemical Composition

6.1 The steel shall conform to the chemical requirements specified in Table 1.

6.2 Steels to which lead has been added shall not be used.

TABLE 1 Chemical Requirements

Note—For each reduction of 0.01 % below the specified carbon maximum (0.35 %), an increase of 0.06 % manganese above the specified maximum (1.05 %) will be permitted up to a maximum of 1.35 %.

Element	Composition, %
Carbon	0.35 max
Manganese	0.60-1.05
Phosphorus	0.035 max
Sulfur	0.040 max
Silicon	0.10-0.35
Copper	0.40 max ^A
Nickel	0.40 max ^A
Chromium	0.30 max ^{A,B}
Molybdenum	0.12 max ^{A,B}
Vanadium	0.05 max
Columbium	0.02 max

 $^{\it A}$ The sum of copper, nickel, chromium and molybdenum shall not exceed 1.00 %.

^B The sum of chromium and molybdenum shall not exceed 0.32 %.

Tensile strength, min, psi [MPa]	70 000 [485]
Yield strength, min, psi [MPa] ^B	36 000 [250]
Elongation in 2 in. or 50 mm, min, %:	
Basic minimum elongation for walls 5/16 in. [7.9 mm] and over in thickness, strip tests.	30
When standard round 2-in. or 50-mm gage length or smaller proportionally sized specimen with the gage length equal to 4D is used	22
For strip tests, a deduction for each 1/32-in. [0.8-mm] decrease in wall thickness below 5/16 in. [7.9 mm] from the basic minimum elongation of the percentage points of Table 3	1.50 ^{<i>C</i>}
Reduction of area, min, % ^D	30
Hardness, HB, max	187

^A For small forgings, see 7.3.4.

^B Determined by either the 0.2 % offset method or the 0.5 % extension-underload method.

^C See Table 3 for computed minimum values.

^D For round specimens only.

TABLE 3 Computed Minimum Values

Wall Thickness		Elongation in 2 in. or 50
in.	mm	— mm, min, %
5/16 (0.312)	7.9	30.00
⁹ ⁄ ₃₂ (0.281)	7.1	28.50
1⁄4 (0.250)	6.4	27.00
7/32 (0.219)	5.6	25.50
3/16 (0.188)	4.8	24.00
5/32 (0.156)	4.0	22.50
1⁄8 (0.125)	3.2	21.00
3/32 (0.094)	2.4	19.50
1/16 (0.062)	1.6	18.00

Note—The above table gives the computed minimum elongation values for each 1/32-in. [0.8-mm] decrease in wall thickness. Where the wall thickness lies between two values shown above, the minimum elongation value is determined by the following equation:

$$E = 48T + 15.00$$

where:

E = elongation in 2 in. or 50 mm, %, and

T =actual thickness of specimen, in. [mm].

7. Mechanical Properties

7.1 The material shall conform to the mechanical property requirements prescribed in Table 2 and Table 3.

7.2 For normalized, normalized and tempered, or quenched

⁹ Available from American Petroleum Institute, 2101 L St. N.W., Washington, DC 20037.

¹⁰ Available from American Welding Society, 550 LeJeune Rd., P.O. Box 351040, Miami, FL 33135.

¹¹ For definition of Class 300, see ASME B16.5.

¹² For definition of special class, see ASME B16.34.

and tempered forgings, the central axis of the test specimen shall correspond to the 1/4 *T* plane or deeper position, where *T* is the maximum heat-treated thickness of the represented forging. In addition, for quenched and tempered forgings, the midlength of the test specimen shall be at least *T* from any second heat-treated surface. When section thickness does not permit this positioning, the test specimen shall be positioned as near as possible to the prescribed location.

7.3 Tension Tests:

7.3.1 One tension test shall be made for each heat of as-forged components.

7.3.2 One tension test shall be made from each heat-treating charge. If more than one heat is included in such a charge, each heat shall be tested.

7.3.2.1 When the heat-treating temperatures are the same and the furnaces (either batch or continuous type), are controlled within $\pm 25^{\circ}$ F [$\pm 14^{\circ}$ C] and equipped with recording pyrometers so that complete records of heat treatment are available, then one tension test from each heat is required instead of one test from each heat in each heat-treatment charge. The test specimen material shall be included with a furnace charge.

7.3.3 Testing shall be performed in accordance with Test Methods and Definitions A 370. The largest feasible round specimen as described in Test Methods and Definitions A 370 shall be used except when hollow cylindrically shaped parts are machined from seamless tubulars. The gage length for measuring elongation shall be four times the diameter of the test section. When hollow cylindrically shaped parts are machined from seamless tubular shaped parts are machined from seamless tubular materials, strip tests may be used.

7.3.4 Forgings too small to permit obtaining a subsize specimen of 0.250 in. [6.35 mm] diameter or larger (see Test Methods and Definitions A 370) parallel to the dimension of maximum working, and produced in equipment unsuitable for the production of a separately forged test bar such as an automatic or semi-automatic press, may be accepted on the basis of hardness only. One percent of the forgings per lot (see Note 2), or ten forgings, whichever is the lesser number, shall be selected at random, prepared, and tested using the standard Brinell test in Test Methods and Definitions A 370. The locations of the indentations shall be at the option of the manufacturer but shall be selected to be representative of the forging as a whole. One indentation per forging shall be required but additional indentations may be made to establish the representative hardness. The hardness of all forgings so tested shall be 137 to 187 HB inclusive.

Note 2—A lot is defined as the product from a mill heat or if heat treated, the product of a mill heat per furnace charge.

7.4 *Hardness Tests*—Except when only one forging is produced, a minimum of two forgings shall be hardness tested per batch or continuous run as defined in 7.3.2.1 to ensure that forgings are within the hardness limits given in Table 2. When only one forging is produced, it shall be hardness tested as defined in 7.3.2.1 to ensure it is within the hardness limits given in Table 2. Testing shall be in accordance with Test Methods and Definitions A 370. The purchaser may verify that the requirement has been met by testing at any location on the

forging, provided such testing does not render the forging useless.

8. Hydrostatic Tests

8.1 Such tests shall be conducted by the forging manufacturer only when Supplementary Requirement S8 in Specification A 961 is specified.

9. Retreatment

9.1 If the results of the mechanical tests do not conform to the requirement specified, the manufacturer may heat treat or reheat treat the forgings as applicable and repeat the test specified in Section 7.

10. Repair by Welding

10.1 Repair of defects by the manufacturer is permissible for forgings made to dimensional standards such as those of ASME or for other parts made for stock by the manufacturer. Prior approval of the purchaser is required to repair-weld special forgings made to the purchaser's requirements.

10.2 Weld repairs shall be made by a process that does not produce undesirably high levels of hydrogen in the welded areas.

10.3 All forgings repaired by welding shall be post-weld heat treated between 1100°F [593°C] and the lower transformation temperature for a minimum of ¹/₂ h/in. [¹/₂ h/25.4 mm] of maximum section thickness, or alternatively annealed, normalized and tempered, or quenched and tempered. If the forging was not previously heat treated, the original tempering temperature was exceeded, or the forging was fully heat treated in the post weld cycle, then the forging shall be tested in accordance with Section 7 on completion of the cycle.

10.4 The mechanical properties of the procedurequalification weldment shall, when tested in accordance with Section IX of the ASME Boiler and Pressure Vessel Code, conform with the requirements listed in Table 2 for the thermal condition of repair-welded forgings.

11. Rejection and Rehearing

11.1 Each forging that develops injurious defects during shop working or application shall be rejected and the manufacturer notified.

12. Certification

12.1 *Identification Marking*—For forgings made to specified dimensions, when agreed upon by the purchaser, and for forgings made to dimensional standards, application of identification marks as required in Specification A 961 shall be the certification that the forgings have been furnished in accordance with the requirements of this specification. The specification designation included on test reports shall include year of issue and revision letter, if any.

12.2 *Test Reports*—When test reports are required, the manufacturer shall also provide the following, where applicable:

12.2.1 Type heat treatment, Section 5,

12.2.2 Tensile property results, Section 7 (Table 2), report the yield strength and ultimate strength, in ksi [MPa], elongation and reduction in area, in percent,

12.2.3 Chemical analysis results, Section 6 (Table 1). When the amount of an unspecified element is less than 0.02 %, then the analysis for that element may be reported as "< 0.02 %,"

12.2.4 Hardness results, Section 7 (Table 2), and

12.2.5 Any supplementary testing required by the purchase order.

13. Product Marking

13.1 If the forgings have been quenched and tempered, the letters "QT" shall be stamped on the forgings following this specification number.

13.2 Forgings repaired by welding shall be marked with the letter "W" following this specification number.

13.3 When test reports are required for larger products, the markings shall consist of the manufacturer's symbol or name, this specification number, and such other markings as necessary to identify the part with the test report (13.1 and 13.2 shall

apply). The specification number marked on the forgings need not include specification year of issue and revision letter.

13.4 *Bar Coding*—In addition to the requirements in Specification A 961 and 13.3, bar coding is acceptable as a supplemental identification method. The purchaser may specify in the order a specific bar coding system to be used. The bar coding system, if applied at the discretion of the supplier, should be consistent with one of the published industry standards for bar coding. If used on small parts, the bar code may be applied to the box or a substantially applied tag.

14. Keywords

14.1 pipe fittings, steel; piping applications; pressure containing parts; steel flanges; steel forgings, carbon; steel valves; temperature service applications, elevated; temperature service applications, high

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, and order.

S1. Hardness

S1.1 The purchaser may check the hardness of any or all forgings supplied at any location on the forging and the hardness shall be 137 to 187 HB. All forgings not within the specified hardness range shall be rejected.

S2. Heat Treatment

S2.1 All forgings shall be heat treated as specified by the purchaser.

S2.2 When forgings not requiring heat treatment by 5.1 are supplied heat treated by purchaser request, the basis for determining conformance with Table 2 and Table 3 shall be hardness testing per 7.4 and either (1) tensile testing of heat treated forgings per 7.2, or (2) tensile tests from as-forged forgings or separately forged test blanks, as agreed upon between the supplier and purchaser.

S2.3 When test reports are required, and tensile test results were obtained from as-forged forgings or as-forged test blanks, it shall be so indicated on the test report.

S2.4 In addition to the marking required by Section 13, this specification shall be followed by the letter: A for annealed, N for normalized, NT for normalized and tempered, or QT for quenched and tempered, as appropriate.

S3. Marking Small Forgings

S3.1 For small products where the space for marking is less than 1 in. [25 mm] in any direction, test reports are mandatory and marking may be restricted to only such symbols or codes as are necessary to identify the parts with test reports.

S3.2 When the configuration or size does not permit marking directly on the forging, the marking method shall be a matter of agreement between the manufacturer and the purchaser.

S4. Carbon Equivalent

S4.1 The maximum carbon equivalent, based on heat analysis, shall be 0.47 for forgings with a maximum section thickness of 2 in. or less, and 0.48 for forgings with a maximum section thickness of greater than 2 in.

S4.2 Determine the carbon equivalent (CE) as follows:

CE = C + Mn/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15

S4.3 A lower maximum carbon equivalent may be agreed upon between the supplier and the purchaser.

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is copyrighted by ASTM, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.